
Software Design Document

GeoKings - GeoSTAC

Sponsors - USGS Amy Stamile, USGS Trent Hare, USGS Jason Laura

Andrew Usvat, Zack Bryant, Alexander Poole,
Jackson Brittain, John Cardeccia

CS 486

Instructor: Dr. Leverington
Mentor: Vahid Nikoonejad Fard

9/21/2023

Northern Arizona University



Table of Contents

Topic Page

Introduction ………………………………………………………………… 3

Implementation Overview ………………………………………………… 5

Architectural Overview ……………..……………………………………… 6

Module Interface & Descriptions …….…………………………………… 8

I. Stylizing ………………………………………..……………..…….. 8

II. API Fetch ………………………………...……………...…….….. 10

III. Graphical User Interface (GUI) ………………...………….…… 12

Implementation Plan ………………..….…………………………………… 15

Conclusion ………………………..…….…………………………………… 16



Introduction

The decades of space exploration by governmental agencies such as the

National Aerospace & Aeronautics Administration (NASA), European Space Agency

(ESA), Japan Aerospace Exploration Agency (JAXA), and others have resulted in

volumes of data about the various planets of our solar system.

The amount of data, and the complexity and cost of the programs used to

convert the raw data into Analysis Ready Data (ARD) make it difficult for the public to

access. To solve this problem, the United States Geological Survey (USGS) created

GeoSTAC, a web based map application - similar to Google maps, but for other planets

- built by a series of NAU capstone teams. It provides users easy access to available

ARD.

Problem Statement

The current implementation of GeoSTAC does an excellent job of delivering ARD to

users. A large amount of available data, however, in the form of vector data (lines and

polygons representing geologic features), cannot be accessed or displayed by

GeoSTAC. Our clients have laid out the following requirements regarding the desired

additional functionality of the application:

● Access the available vector data from a provided API.

● Customized styling of the vector data with icons and patterns.

● Implementation of user search functionality for the newly available data.



Along with these functional requirements there will also be some necessary

performance requirements.

● Verifying that the correct data is being displayed and stylized.

● The UI changes necessary for users to be able to query the Vector API will need

to be user friendly.

● Updating the existing application documentation to include our modifications.

All of this will need to be done within the constraints placed by our clients and

prior capstone teams; a front-end written in ReactJS, rendering handled by Leaflet, and

an ElasticSearch backend.

Successfully implementing the previously mentioned features will forge GeoSTAC into a

more advanced, and even more useful data analysis tool for planetary scientists.

Solution

Our team proposes to integrate the new Vector API into the GeoSTAC

application in a way that compliments the application without having to rebuild the entire

existing project. The change our team makes will allow for the:

● Fetching and rendering the data via a fetch call, and rendering all vector data of

points, lines, and polygons - stored in the GeoJSON format - with the JavaScript

library Leaflet.

● Implementing and modifying the Leaflet.SLD package to display the correct icons

and patterns, as described in the SLD files recommended by our client.



● Integrating ElasticSearch with the Vector API so that users are able to submit

correctly formatted queries - per the Open Geospatial Consortium’s (OGC)

Common Query Language (CQL) specification - and have only the requested

data returned by the API.

While integrating these features it will be necessary to implement testing to ensure the

correct information is being rendered for the corresponding geologic feature. Additional

testing with users will also be required to highlight any potential difficulty with the

updated UI.

We see this implementation as an update to the overall system, expanding its

capabilities and improving its usefulness.

Implementation Overview

Our client – the USGS – has an existing application that they wish to make

improvements upon - their interplanetary mapping application GeoSTAC. Users will

need to be able to view maps of not only the currently available data, but also view

maps populated by vector data. The GeoKings team will modify the existing application

so that it can also fetch data from the USGS Vector API and render the data using the

existing Leaflet library.

The Leaflet library used by the prior capstone teams has an available package

called Leaflet.SLD. We will implement a modified form of this package in order to apply

stylization to the newly rendered vector data. The data used for stylization will come



from provided SVG files of icons and color patterns, developed by the geologic scientific

community.

This new source of vector data will necessitate that users be able to sort through

and select the data they wish to view. We will integrate ElasticSearch into the API calls,

allowing user queries to return only the specified data from the Vector API. The ability to

search through and return only the relevant data means that UI changes will need to be

made. The existing UI – written in ReactJS – will be modified to include fields for users

to select the desired data.

Architectural Overview

While the prior teams either created the base architecture, or heavily modified it,

the necessary framework of the GeoSTAC application is now entirely in place. Instead

of changing the existing architecture, our team will simply be expanding upon the

existing framework with the addition of new functionality.

The diagram below (Figure 1) provides a visualization of what our added

functionality will look like, and how the various functions and features will interact with

one another. This will all largely (though not exclusively) take place within two files:

AstroMap.js and Leaflet.SLD.



Figure 1: Diagram of Search, Vector API, AstroMap, and Leaflet interactions

The Vector API is the source of the vector data that we have been tasked with

adding to the GeoSTAC application. Fetch commands will be run to pull the necessary

data, passing it to GeoSTAC.

The search functionality being implemented here is handled by ElasticSearch -

utilized by the request of our clients - and will allow for the filtering of the results for the

specific geologic features desired by the user. It will be paired with a series of UI

improvements to the front-end of the GeoSTAC application. The UI changes will be

achieved by modifying the existing ReactJS code to allow users to interact with

ElasticSearch and select from the available search parameters.



The data retrieved from the Vector API is passed to AstroMap, and then to

Leaflet for rendering. From there, the Leaflet.SLD package will style it according to the

features described in the data.

The final result will be a fully rendered map of vector data, with all of the selected

geologic features being displayed and represented by the appropriate icons and

patterns.

Module and Interface Descriptions

I. Stylizing

Leaflet.SLD is responsible for managing symbols on the Leaflet map for

GeoJSON features. As of right now, Leaflet.SLD is being used in direct relation to

AstroMap.js, this is because AstroMap.js holds the reasonability of rendering the

GeoJSON features to the map and Leaflet.SLD is responsible for displaying these

symbols onto these GeoJSON features. Leaflet.SLD will be called right after a feature is

removed, refreshed or added to the Leaflet map in order to properly manage the

visibility with respect to the GeoJSON features.



Figure 2: Leaflet.SLD and it’s relations in GeoSTAC

Leaflet.sld has two publicly available methods. These methods are intended to

be used solely for manipulating symbols on the Leaflet map. The methods add_symbol

and remove_symbols will be used to either add symbols to the features visible on the

map or remove those symbols no longer visible on the map respectively.



a. Symbolize_with_icons

Takes in a geolayer and a map object. From here the function will parse through

the geolayer’s features adding symbols to the map object. There is no return for this

method.

b. Remove_symbol

Takes in a geolayer to be removed from the map. It is called after any time a

geolayer is removed from the map. Remove_symbol will look at the latest geolayer that

is removed and remove all symbols that were being displayed with that layer. It doesn’t

return anything as of right now.

II. API Fetch

The data implemented into our application is being fetched from 2 different API’s.

One of which, the SpatioTemporal Asset Catalog (STAC), was previously implemented

by the GeoSTAC team. Now, the GeoKings have implemented an API containing vector

style data points that differ heavily from the previous team. What this means is that we

had to modify the previous works in order to fetch the new data correctly, and properly

store, and send it to our React components for interaction. Below is a diagram showing

the connection between the fetch data functionality with the FootprintFetcher React

component.



Figure 3: Diagram of API Fetch

a. FetchData

FetchData is the main component responsible for gathering the endpoints from

two different API’s. As of now, FetchData is handling both the Spatio Temporal Asset

Catalogs (STAC) API in addition to the new vector API. The modifications we had to

make here was to fetch the additional API to be used by the rest of the app and make

sure that it can grab each data set the API contains.



b. FootprintFetcher

FootprintFetcher is a React component directly involved in fetching a specific

number of footprints requested by the user. This first component is one that directly

interacts with FetchData through its parent functions. Once the footprints are fetched, it

then sends the data to FootprintResults to be sorted and displayed. With the

modification of FetchData, we modified FootprintFetcher to decipher the data and to

figure out which array to gather information from. Because we have multiple different

data sets within the vector API, it is crucial that FootprintFetcher is able to understand

where to grab that information from given a specific id.

III. Graphical User Interface (GUI)

The graphical interface of our GeoKings project serves a big purpose due to the

fact that it requires interaction between the user and the interface. The major GUI

components consist of displayed footprints, metadata that users can visualize and a

sort/filter area for raster and the new addition of vector data. That being said, this

requires modifying React components that were in the existing GeoSTAC structure. Our

Figure 4 below provides a visual representation of the original and modified components

for the GUI. These components are highlighted appropriately.



Figure 4: Diagram of GUI

a. Sidebar

The Sidebar is a component that is the parent component of Result Accessories

and Search and Filter Input. Sidebar sets the visual parameters for the right part of the

GeoSTAC application. Additionally, it is the component that calls both of its child

components and holds each of them responsible for their functionality.

b. FootprintResults



The Footprint Results component is a child component to Sidebar. Its function is

to retrieve all of the API links containing data in JSON format, organize it so that it can

load the footprints properly, and then call Result Accessories with the organized API

links. The modifications made to this component were the additions of the vector data

API links. There are multiple checks performed inside the component to accommodate

the different format of the vector data API.

c. ResultAccessories

The Result Accessories component is a child component to Footprint Results. Its

function is to display each raster or vector footprint card on the right hand side of the

GeoSTAC application. The modifications made to this component were focused on

being able to format vector data footprint cards in a different format than how the raster

data cards are displayed and filtered.

d. SearchandFilterInput

The Search and Filter Input component is a child component to Sidebar. The

SearchandFilterInput’s function is to allow the user to narrow down their raster/vector

data results according to the parameter they would like to filter by. For raster data, a

user can filter a footprint based off of its id, date, and location. The modifications made

to this component was creating a filtering system through the use of checkboxes that

filters all vector data based off of its “queryables”. These queryables are all the core

information given from the PyGeo API of the specific footprint selected.

e. GeoTiffViewer



The GeoTiff Viewer component is a child component of Result Accessories. It is a

simple overlay that gives a better view of a footprint and it provides external links to give

the user more information regarding a specific footprint. It is called through an HTML

element in Result Accessories.

F. AstroDrawControl

AstroDrawControl is a child component of the map container. This component is

what adds drawing controls to the Leaflet map. These drawing tools are what is used in

order to select several footprints at a time on the Leaflet layer.

Implementation Plan

Through collaboration, many of the previously outlined modules are already

drafted and are nearly ready for the final version. There are only a few components that

still actively need development in order to be implemented with the bigger picture.

Namely, those components are the Symbolize_with_icons module and the

Remove_symbol module. These two modules have a handful of blockers that the team

is currently working through in order to move forward with the development of the

project. These modules are attainable for the team given a structured plan. Below is the



working timeline for the rest of the semester.

Figure 5: Gantt Chart of Implementation Plan

If all goes to plan, the two remaining modules will be implemented either by the

29th of September, or the 11th of October. The day the first remaining module is

completed, the team will begin to wrap up the stylizing segment by debugging and

polishing. This will allow the team to focus their efforts on getting the module operational

before making sure that it is production ready. Outside of the topic of stylizing, the

remaining segments include the debugging of the GUI and ElasticSearch. Because

most of the programming was completed over the summer, the team is going to be

focusing their efforts on debugging and polishing those segments in order to achieve a

high quality product.

Conclusion

GeoSTAC’s mission boils down to providing Analysis Ready Data to researchers

around the globe. In order to do this most effectively, we must adapt to the ever growing

amount of unprocessed data in regards to planetary systems. By improving upon the

application already in place, we not only contribute to the innovation of the research

being done today, but also to the research of others for years to come. The features that



will be implemented by the GeoKings will open the door to new possibilities for

planetary research in a way that has yet to be done at this caliber. In order to do this,

we must develop several modules to facilitate the availability of ARD. Broken up into

three sections, there is the Stylizing, the API Fetch, and the GUI segment. Within

Stylizing, Symbolize_with_icons and Remove_symbol must be developed. API Fetch

uses FetchData and FootprintFetcher. For GUI, there is Sidebar, FootprintResults,

ResultAccessories, SearchandFilterInput, GeoTiffViewer, and AstroDrawControl.

Together, these modules will contribute to the advancement of planetary research. By

having an outline for where we are and what point we need to be in the development of

this project, we are able to effectively set milestones that allow for frictionless progress.


